Exploring transcription regulation through cell-to-cell variability.
نویسندگان
چکیده
The regulation of cellular protein levels is a complex process involving many regulatory mechanisms, each introducing stochastic events, leading to variability of protein levels between isogenic cells. Previous studies have shown that perturbing genes involved in transcription regulation affects the amount of cell-to-cell variability in protein levels, but to date there has been no systematic characterization of variability in expression as a phenotype. In this research, we use single-cell expression levels of two fluorescent reporters driven by two different promoters under a wide range of genetic perturbations in Saccharomyces cerevisiae, to identify proteins that affect variability in the expression of these reporters. We introduce computational methodology to determine the variability caused by each perturbation and distinguish between global variability, which affects both reporters in a coordinated manner (e.g., due to cell size variability), and local variability, which affects the individual reporters independently (e.g., due to stochastic events in transcription initiation). Classifying genes by their variability phenotype (the effect of their deletion on reporter variability) identifies functionally coherent groups, which broadly correlate with the different stages of transcriptional regulation. Specifically, we find that most processes whose perturbation affects global variability are related to protein synthesis, protein transport, and cell morphology, whereas most processes whose perturbations affect local variability are related to DNA maintenance, chromatin regulation, and RNA synthesis. Moreover, we demonstrate that the variability phenotypes of different protein complexes provide insights into their cellular functions. Our results establish the utility of variability phenotype for dissecting the regulatory mechanisms involved in gene expression.
منابع مشابه
Apoptosis induction in acute promyelocytic leukemia cells through upregulation of CEBPα by miR-182 blockage
MicroRNAs (miRNAs) involved in regulation of the genes. The CCAAT/enhancer-binding protein-α (CEBPα) is a crucial transcription factor for normal hematopoiesis and cell cycle that frequently disrupted in human acute myeloid leukemia (AML). The miR-182 up-regulation in several malignant diseases such as AML was reported, in the other hand bioinformatics analysis revealed CEBPα targeted by miR-18...
متن کاملI-51: The Role of the Transcription FactorGCNF in Germ Cell Differentiation and Reproductionin Mice
The germ cell nuclear factor (GCNF) is a member of the nuclear receptor super family of transcription factors. GCNF expression during gastrulation and neurulation is critical for normal embryogenesis in mice. GCNF represses expression of the POU domain transcription factor Oct4 during mouse post-implantation development in vivo. Oct4 is thus down-regulated during female gonadal development, whe...
متن کاملبیان ژن MALAT1 بعنوان یک نشانگر زیستی جدید در بیولوژی سرطان
Background & Aim: Long non-coding RNAs are regulatory molecules that adjust many vital intracellular processes. MALAT1 is a long non-coding RNA playing a key role in the regulation of intracellular important processes and also involved in biology of various cancers. The purpose of this study was to investigate the functions of MALAT1 and overview of its role in cancer biology. Methods: in this...
متن کاملCoxsackievirus B3 protease 3C induces cell death in eukaryotic cells
Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...
متن کاملStereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture
Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 15 شماره
صفحات -
تاریخ انتشار 2011